Biotechnology Approaches to Improving Maize Nitrogen Use Efficiency

نویسندگان

  • Stephen Moose
  • Fred E. Below
چکیده

Nitrogen (N) is an essential and often limiting nutrient to plant growth. Maize grain yields are highly responsive to supplemental N, leading to annual application of an estimated 10 million metric tons of N fertilizer to the maize crop worldwide (FAO 2004). Nearly all cultivated maize in developed countries receives some form of N fertilizer and N use is increasing in developing countries, where its impacts on raising grain yields from nutrient-poor soils are greatest. The extensive use of N fertilizer not only increases crop input costs, but also can negatively impact soil, water and air quality at both local and ecosystem scales (Tilman et al. 2002). The manufacture of N fertilizer is an energy-intensive process that is becoming increasingly costly, due to the use of natural gas as both a reactant and heat source for the conversion of atmospheric N2 to anhydrous ammonia (NH3). For these reasons, reducing the amount of supplemental N used in maize production will have significant positive economic and environmental benefits to world agriculture. Nitrogen use efficiency (NUE) can be defined in a variety of ways that emphasize different components of the soil and plant system (reviewed in Good et al. 2004) or economic returns to fertilizer use. In cereal crops like maize, agronomic NUE is most simply expressed as the ratio of grain yield to N fertilizer supplied. Comparisons of maize grain yields and N fertilizer usage on a global basis lead to estimates of maize NUE ranging from 25–50% (Raun and Johnson 1999; Tilman et al. 2002),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maize response to water, salinity and nitrogen levels: yield-water relation, water-use efficiency and water uptake reduction function

Water, salinity and nitrogen are the major factors affecting maize production in arid and semi-arid areas. The objectives of this study were to investigate the effects of different water, salinity and nitrogen levels on yield-water relationships, water use, water productivity (WP), water use efficiency (WUE) and water uptake reduction function by maize hybrid SC-704 in a semi-arid area and ...

متن کامل

Water Use Efficiency in Maize Production – the Challenge and Improvement Strategies

As one of the three most important cereal species, maize is grown in a range of environments, and is a basic food grain in many areas and several cultures. This paper examines water use efficiency (WUE) in maize through a review of literatures on the topic. It then examines strategies to improve WUE, through plant breeding, biotechnology and changes to agronomic practice. In breeding for improv...

متن کامل

Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation

Irrigation water is limiting for crop production in arid and semi-arid areas. Furthermore, excess nitrogen (N) application is a source of groundwater contamination. Partial root drying irrigation (PRD) can be used as water saving technique and a controlling measure of groundwater N contamination. The objectives of this investigation were to evaluate the effect of ordinary furrow irrigation (OFI...

متن کامل

شبیه‌سازی رشد، عملکرد، نیتروژن دانه و کارایی مصرف آب ارقام ذرت دانه‌ای با استفاده از مدل CERES-Maize

In this research, CERES-Maize crop model was calibrated, validated and evaluated for different maize hybrids under climatic conditions of Gonabad, east of Iran. For this purpose, an experiment was carried out based on a split-split plot randomized complete blocks design. Main factor consisted of three irrigation regimes (optimum irrigation, moderate drought stress, and severe drought stress), s...

متن کامل

Inheritance of Nitrogen Use Efficiency in Inbred Progenies of Tropical Maize Based on Multivariate Diallel Analysis

The objective of our study was to characterize and determine the patterns of genetic control in relation to tolerance and efficiency of nitrogen use by means of a complete diallel cross involving contrasting inbred progenies of tropical maize based on a univariate approach within the perspective of a multivariate mixed model. Eleven progenies, previously classified regarding the tolerance and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008